Benchmark instances

Resource-constrained project scheduling problem with partially renewable resources and general temporal constraints

Instances and identifiers are described in Watermeyer, K.; Zimmermann, J. (2020): A branch-and-bound procedure for the resource-constrained project scheduling problem with partially renewable resources and general temporal constraints, OR Spectrum 42 (2), 427-460.

Resource-constrained project scheduling problem with partially renewable resources and precedence constraints

Generation parameters are described in K. Watermeyer, J. Zimmermann (2021): A partition-based branch-and-bound algorithm for the project duration problem with partially renewable resources and general temporal constraints, OR Spectrum, advance online publication, doi:10.1007/s00291-021-00654-9.

A new mathematical formulation for a potash-mine shift scheduling problem with a simultaneous assignment of machines and workers

For more information:

Seifi, C.; Schulze, M.; Zimmermann, J., A new mathematical formulation for a potash-mine shift scheduling problem with a simultaneous assignment of machines and workers, European Journal of Operational Research (2020), DOI: https://doi.org/10.1016/j.ejor.2020.10.007

Resource Availability Cost Problems

Instances and identifiers are described in Kreter, S.; Schutt, A.; Stuckey, P.J.; Zimmermann, J. (2016): Mixed-integer Linear Programming and Constraint Programming Formulations for Solving Resource Availability Cost Problems, submitted to European Journal of Operational Research.

Multi-project management given multi-skilled workers with heterogeneous skill levels

Resource-constrained project scheduling problem with general temporal constraints and calendars

  • We use the identifiers from Kreter, S.; Rieck, J.; Zimmermann, J. (2016): Models and solution procedures for the resource-constrained project scheduling problem with general temporal constraints and calendars, European Journal of Operational Research 251 (2), 387-403. Instances with 200 and 500 activities, respectively, were introduced in Kreter, S.; Schutt, A.; Stuckey, P.J. (2016): Using constraint programming for solving RCPSP/max-cal, submitted to Constraints.
  • Input-structure of the testsets.
  • Testset 10-60; Results 10-60.
  • Testset 10-80; Results 10-80.
  • Testset 20-60; Results 20-60.
  • Testset 20-80; Results 20-80.
  • Testset 50-60; Results 50-60.
  • Testset 50-80; Results 50-80.
  • Testset 100-60; Results 100-60.
  • Testset 100-80; Results 100-80.
  • Testset 200-60; Results 200-60.
  • Testset 200-80; Results 200-80.
  • Testset 500-60; Results 500-60.
  • Testset 500-80; Results 500-80.

Vehicle routing with simultaneous delivery and pick-up

  • We use the identifiers from Rieck, J.; Zimmermann, J.:
    Exact solutions to the symmetric and asymmetric vehicle routing problem with simultaneous delivery and pick-up, Technical Report (2012), Clausthal University of Technology.

Many-to-many Location-Routing with Inter-Hub Transport and Multi-Commodity Pickup-and-Delivery

Machine scheduling in underground mining: An application in the potash industry

  • We use the identifiers from Schulze, M.; Rieck, J.; Seifi, C.; Zimmermann, J. (2016): Machine scheduling in underground mining: an application in the potash industry, OR Spectrum, 38(2), 365-403.
  • Input structure of the testsets
  • Testset 30_5
  • Testset 60_10
  • Testset 120_20
  • Testset 120_15
  • Testset 240_30
  • Testset 240_20

      Unit Commitment Problem with Hydro-Thermal Coordination

      Instances and identifiers are described in the article "A Long-Term Unit Commitment Problem with Hydro-Thermal Coordination for Economic and Emission Control in Large-Scale Electricity Systems" by Franz, A. and Zimmermann, J. (submitted to Journal OR Spectrum).